

PHOTOREFINERIES 2024

1st International Conference on Novel Photorefineries for Resource Recovery

Valladolid, 09-11 September 2024

Production of protein-rich purple bacteria biomass from sugarbeet molasses for food application: Process optimisation and economic feasibility.

Guillaume Bayon-Vicente, Manon Gilson, Guillaume Gégo, Damien Dumont, Ruddy Wattiez and Baptiste Leroy

UNIVERSITÉ de Mons

...for a sustainable future

Context of the alternative protein field Plant-based food

- Increasing proportion of the population eager to switch toward meat-less food
- Increase by 21% of plant-based food sales in Europe between 2020 and 2022
- Europe protein independance is needed

Data taken from Next Food Chain Memorandum Elections 2024

+21%

2022

Context of the PROTEBoost project

Win4excellence - 2210182 - FoodWal - First evaluation of the portfolio

Why using molasses as feedstock for protein-rich biomass?

- ✓ Low-value co-products from the sugar industry
- ✓ Tremendous quantity produced each years (70 millions tons per year)

Industrial expectations and challenges in the field of alternative proteins

Win4excellence – 2210182 – FoodWal – First evaluation of the portfolio

Techno-economic assessment

Cesa

space solutions

Production cost (medium + energy)

Cost to produce 1kg of fresh purple bacteria biomass													
Needed Volume (L)	Molasses (g)	NH₄CI (g)	Invertase (mL)		Molasses price(€)	NH4Cl price (€)	Invertase price(€)	Medium cost (€)					
100	1120	380	0.008		0.224	0.2299	0.064	0.52					
										Total cost(€)			
	Energy 525nm (kW)	Energy 592nm (kW)	Energy 850nm (kW)	Total energy(kW)	Culture time	Kw/h experiment (kW/h)	Energy price Belgique (August 2023) (€)	Energy cost(€)		15.19			
	0.0936	0.0936	0.0624	0.2496	7	41.9328	0.35	14.67					

Installation cost (high-tech photobioreactor)

Instrument	Installation cost (€)	Capacity (L)	Productivity (g/L*d)	Investment return per year (€)	Investment return over 7 years (€)	Full investment return (years)
High-tech tubular photobioreactor	80000	300	2	470.87*	3296.10	169.90
Maximal installation cost	NA	100	1.25	98.10*	686.69	7€/L

^t Based on a selling price of 5€/kg

Economic process optimisation

Low-cost process

Development of a low-cost photobioreactor

Optimisation of the light parameter

Low-cost photobioreactor

Process optimisation – energy demand

Process optimisation – installation cost

High-tech vs Low cost photobioreactor

Low cost photobioreactor

What about biomass quality

What about biomass quality

- High-tech PBR
- Low-cost PBR
- ♦ Beef
- Soybean
- Whey

What about biomass quality

- Low-cost PBR
- Beef
- **o** Soybean
- Whey

Take home message

> Development of purple bacteria production at bioindustrial scale should be subjected to optimisation

- Both OPEX and CAPEX should be reduced (2€/kg for OPEX and 7€/L for CAPEX)
- > Design of Low-cost photobioreactor is feasible

> Proteins present in *Rhodospirillum rubrum* are comparable to those find in different protein rich aliment

> Proteins present in *Rhodospirillum rubrum* are recognised as « superior » quality